FUNDAMENTALS OF ELECTROMAGNETIC FIELDS - February $12^{\text {th }}, 2018$

1	2	3	4

Name and surname
Identification number
Signature

Problem 1 - A positive uniform charge density $\rho=10^{-9} /(9 \pi) \mathrm{C} / \mathrm{m}^{3}$ is embedded in a dielectric sphere with radius $R=3 \mathrm{~m}$ (grey part in the figure). A negative point charge, with value $Q=-1 \mathrm{nC}$, is fixed at point $\mathrm{C}(2 R, 0)$. Calculate the position of point $P\left(x_{P}, 0\right)$ for which the total electric field is zero (consider only $x>R$).

Solution

The charge in the sphere is positive and the one in C is negative, which means that the two electric fields, considering only the portion of the plane for $x>R$, will be opposite only beyond C , i.e. for $x>2 R$. In this case, by applying the Gauss' theorem to the sphere:
$\int_{S} \vec{D}_{1} \cdot d \vec{S}=\int_{V} \rho d V=Q_{\text {TOT }}$,
we obtain:
$\vec{E}_{1}(x)=\frac{\left|Q_{T O T}\right|}{4 \pi \varepsilon_{0} x_{P}^{2}} \vec{\mu}_{x}$
As ρ is uniform throughout the sphere:

$$
Q_{\text {TOT }}=\int_{V} \rho d V=\rho \frac{4}{3} \pi R^{3}=4 \mathrm{nC}
$$

For $x>2 R$, considering the charge in C , we obtain:
$\vec{E}_{2}(x)=-\frac{|Q|}{4 \pi \varepsilon_{0}\left(x_{P}-2 R\right)^{2}} \vec{\mu}_{x}$
Summing up the effects and searching for the zero of the electric field:
$\vec{E}=\vec{E}_{1}+\vec{E}_{2}=0 \rightarrow \frac{\left|Q_{T O T}\right|}{4 \pi \varepsilon_{0} x_{P}^{2}}=\frac{|Q|}{4 \pi \varepsilon_{0}\left(x_{P}-2 R\right)^{2}}$
Solving for x, we obtain two solutions, i.e. $x_{P 1}=4 R$ and $x_{P 2}=4 / 3 R$. The fist solution is acceptable, the second is not, as $x_{P 2}$ falls between the sphere and point C.

Problem 2 - Consider a square metallic ring with lateral dimension $a=1 \mathrm{~cm}$ and the electric current I flowing along a straight metallic wire of indefinite length. The temporal trend of the current is:

$$
I=100 \sin (100 \pi t) \vec{\mu}_{z} \mathrm{~A} \text { for } t \geq 0 \mathrm{~s}
$$

The distance between wire and the metallic ring is $R=1 \mathrm{~m}$. Calculate the electromotive force for $t \geq 0 \mathrm{~s}$. Assuming then that the metallic ring is associated to a resistance $R=10 \Omega$, calculate the value of the current flowing in the wire.

Assumption: given $R \gg a$, the magnetic field generated by I can be considered to be constant for any point inside the metallic ring.

Solution

The magnetic field generated by the wire and flowing across the metallic ring is:
$\vec{H}=\frac{I}{2 \pi R} \vec{\mu}_{x} \quad(\mathrm{~A} / \mathrm{m})$
The magnetic flux is given by (assuming the magnetic field is constant inside the ring):
$\phi=\int_{S} \vec{B} \cdot d S=\mu_{0} \vec{H} A=\mu_{0} \vec{H} a^{2}$
So the electromotive force is:
$V(t)=\left|-\frac{\partial \phi}{\partial t}\right|= \begin{cases}\mu_{0}\left[\frac{100 \cos (100 \pi t) 100 \pi}{2 \pi R}\right] a^{2}=0.5 \cos (100 \pi t) & t \geq 0 s \\ 0 & t<0 s\end{cases}$
Thus the current is:
$I(t)=V(t) / R=0.05 \cos (100 \pi t) \mathrm{A}$

Problem 3 - A uniform plane wave (frequency $f=20 \mathrm{GHz}$) propagates in a dielectric material $\left(\varepsilon_{r 1}=81, \mu_{r 1}=4, \sigma_{1}=0 \mathrm{~S} / \mathrm{m}\right)$ and impinges on another dielectric material ($\varepsilon_{r 2}=4$, $\mu_{r 2}=1, \sigma_{2}=10^{-2} \mathrm{~S} / \mathrm{m}$). The power density of the incident wave is $S_{i}=23.923 \mathrm{~mW} / \mathrm{m}^{2}$ and the polarization of the wave is linear along $\vec{\mu}_{x}$. Calculate the total electric field in $P(x=0, y=0$, $z=-\lambda_{1}$).

Assume that the angle of the incident electric field \vec{E}_{i} in $(0,0,0)$ is zero.

Solution

First, let us calculate the intrinsic impedance for the two media. For the first one:
$\eta_{1}=\eta_{0} \sqrt{\frac{\mu_{r 1}}{\varepsilon_{r 1}}} \approx 83.8 \Omega$
For the second one, the loss tangent is $\frac{\boldsymbol{\sigma}}{\omega \boldsymbol{\varepsilon}} \approx \mathbf{0 . 0 0 2 2} \ll 1$. Therefore the second medium can be well approximated as a good dielectric. Therefore:
$\eta_{2}=\eta_{0} \sqrt{\frac{\mu_{r 2}}{\varepsilon_{r 2}}}=188.5 \Omega$
The reflection coefficient is:
$\Gamma=\frac{\eta_{2}-\eta_{1}}{\eta_{2}+\eta_{1}} \approx 0.385$
The wavelength in the first medium is:
$\lambda_{1}=\frac{c}{f \sqrt{\varepsilon_{r 1} \mu_{r 1}}}=0.83 \mathrm{~mm}$
The absolute value of the incident electric field is obtained from the incident power density:
$S_{i}=\frac{1}{2} \frac{\left|\vec{E}_{i}\right|^{2}}{\eta_{1}} \rightarrow\left|\vec{E}_{i}\right|=2 \mathrm{~V} / \mathrm{m}$
Thus (considering the assumption):
$\vec{E}_{i}(0,0,0)=2 \vec{\mu}_{x} \mathrm{~V} / \mathrm{m}$

Let us calculate the propagation constant for the first medium:
$\gamma_{1}=j \beta_{1}=j \frac{2 \pi}{\lambda_{1}}==7539.8 \mathrm{rad} / \mathrm{m}$
The incident and reflected fields are:
$\vec{E}_{i}(z)=\vec{E}_{i}(0,0,0) e^{-j \beta_{1} z} \vec{\mu}_{x} \quad \mathrm{~V} / \mathrm{m}$
$\vec{E}_{r}(z)=\vec{E}_{i}(0,0,0) \Gamma e^{j \beta_{1} z} \vec{\mu}_{x} \quad \mathrm{~V} / \mathrm{m}$
The total electric field in P is therefore:
$\vec{E}_{t}(P)=\vec{E}_{i}(P)+\vec{E}_{r}(P)=\vec{E}_{i}(0,0,0) e^{j \beta_{1} \lambda_{\lambda}} \vec{\mu}_{x}+\vec{E}_{i}(0,0,0) \Gamma e^{-j \beta_{1} \lambda_{\mu}} \vec{\mu}_{x}=2.77 \vec{\mu}_{x}$
$\underline{\text { Problem 4 - A source with } V_{g}=50 \mathrm{~V} \text { and internal impedance } Z_{g}=50 \Omega \text { is connected to a load } Z_{L}, ~(1) ~}$ by a transmission line with characteristic impedance $Z_{C}=50 \Omega$. The line length is $l=30 \mathrm{~m}$, the attenuation constant is $\alpha=20 \mathrm{~dB} / \mathrm{km}$ and the frequency is $f=300 \mathrm{MHz}$. Calculate the power absorbed by the load and lost along the line, in two cases:
a) The load is $Z_{L}=50 \Omega$
b) The load is a short circuit

Solution

a) The attenuation constant is first converted into Np / m :

$$
\alpha^{\prime}=\frac{\alpha}{8.686 \cdot 1000}=2.3 \cdot 10^{-3} \mathrm{~Np} / \mathrm{m}
$$

In this case, there is full match in the circuit. Thus, the power absorbed by the load is given by:
$P_{d}=\frac{\left|V_{g}\right|^{2}}{8 Z_{g}}=6.25 \mathrm{~W}$
$P_{L}=P_{d} e^{-2 \alpha^{\prime} l} \approx 5.44 \mathrm{~W}$
The power crossing section $B B$ is:

$$
P_{B B}=P_{d}
$$

Finally, the power lost on the line is:

$$
P_{\text {line }}=P_{B B}-P_{L}=0.81 \mathrm{~W}
$$

b) A short circuit corresponds to $Z_{L}=0 \Omega$: in this case, there is high mismatch at the load section, as no power can be absorbed by a short circuit $\rightarrow P_{L}=0 \mathrm{~W}$. To calculate the power lost on the line, we need to find the input impedance at section BB.
$\Gamma_{L}=\frac{Z_{L}-Z_{C}}{Z_{L}+Z_{C}}=-1$
$\beta=\frac{\omega}{c}=6.28 \mathrm{rad} / \mathrm{m}$
$\Gamma_{B B}=\Gamma_{L} e^{-j 2 \beta l} e^{-2 \alpha \prime}=-0.871$
As $Z_{C}=Z_{g} \rightarrow \Gamma_{g}=\Gamma_{B B}$
$P_{B B}=P_{d}\left(1-\left|\Gamma_{g}\right|^{2}\right)=1.51 \mathrm{~W}$
All the power crossing section BB is lost along the line; in fact:

$$
P_{\text {line }}=P_{B B}-P_{L}=P_{B B}=1.51 \mathrm{~W}
$$

