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Problem 1  - A positive uniform charge density   910 9   C/m3 is embedded in a dielectric 

sphere with radius R = 3 m (grey part in the figure). A negative point charge, with value 1Q    nC, 

is fixed at point C(2R,0). Calculate the position of point P(xP,0) for which the total electric field is 

zero (consider only x > R). 

 

 

Solution 

The charge in the sphere is positive and the one in C is negative, which means that the two electric 

fields, considering only the portion of the plane for x > R, will be opposite only beyond C, i.e. for 

x > 2R. In this case, by applying the Gauss’ theorem to the sphere: 
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As  is uniform throughout the sphere: 
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For x > 2R, considering the charge in C, we obtain:  
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Summing up the effects and searching for the zero of the electric field: 
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Solving for x, we obtain two solutions, i.e. xP1 = 4R and xP2 = 4
3  R. The fist solution is acceptable, 

the second is not, as xP2 falls between the sphere and point C. 

 

 

  



Problem 2  - Consider a square metallic ring with lateral dimension a = 1 cm and the electric 

current I flowing along a straight metallic wire of indefinite length. The temporal trend of the 

current is:  

 100sin 100 zI t   A   for    t ≥ 0 s 

The distance between wire and the metallic ring is R = 1 m. Calculate the electromotive force for 

t ≥ 0 s. Assuming then that the metallic ring is associated to a resistance R = 10 Ω, calculate the 

value of the current flowing in the wire. 

 

Assumption: given R >> a, the magnetic field generated by I can be considered to be constant for 

any point inside the metallic ring. 

 

 

 

Solution 

The magnetic field generated by the wire and flowing across the metallic ring is: 
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The magnetic flux is given by (assuming the magnetic field is constant inside the ring): 

2

0 0

S

B dS H A H a          (Wb) 

So the electromotive force is: 
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Thus the current is: 

I(t) = V(t)/R =  0.05cos 100 t  A 
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Problem 3  - A uniform plane wave (frequency f = 20 GHz) propagates in a dielectric material  

(𝜀𝑟1 = 81, 𝜇𝑟1 = 4, 𝜎1 = 0 S m⁄ ) and impinges on another dielectric material (𝜀𝑟2 = 4, 
𝜇𝑟2 = 1, 𝜎2 = 10−2  S m⁄ ). The power density of the incident wave is Si = 23.923 mW/m2 and the 

polarization of the wave is linear along x . Calculate the total electric field in P(x = 0, y = 0, 

z = -).  

 

Assume that the angle of the incident electric field 
iE in (0,0,0) is zero. 

 

Solution 

First, let us calculate the intrinsic impedance for the two media. For the first one: 
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For the second one, the loss tangent is 
𝝈

𝝎𝜺
≈ 𝟎. 𝟎𝟎𝟐𝟐 << 1. Therefore the second medium can be 

well approximated as a good dielectric. Therefore: 
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The reflection coefficient is: 
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The wavelength in the first medium is: 
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The absolute value of the incident electric field is obtained from the incident power density: 
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Thus (considering the assumption): 
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Let us calculate the propagation constant for the first medium: 
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The incident and reflected fields are: 
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The total electric field in P is therefore: 
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Problem 4  - A source with Vg = 50 V and internal impedance Zg = 50  is connected to a load ZL 

by a transmission line with characteristic impedance ZC = 50 . The line length is 

l = 30 m, the attenuation constant is  = 20 dB/km and the frequency is f = 300 MHz. Calculate the 

power absorbed by the load and lost along the line, in two cases: 

a) The load is ZL = 50  

b) The load is a short circuit 

 

 

Solution 

a) The attenuation constant is first converted into Np/m: 
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In this case, there is full match in the circuit. Thus, the power absorbed by the load is given by: 
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The power crossing section BB is: 

BB dP P  

Finally, the power lost on the line is: 

line BB LP P P   0.81 W 

b) A short circuit corresponds to ZL = 0 : in this case, there is high mismatch at the load section, as 

no power can be absorbed by a short circuit  0LP   W. To calculate the power lost on the line, 

we need to find the input impedance at section BB. 
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As ZC = Zg    g BB
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All the power crossing section BB is lost along the line; in fact: 
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