FUNDAMENTALS OF ELECTROMAGNETIC FIELDS - January $22^{\text {nd }}, 2018$

1	2	3	4

Name and surname

Identification number
Signature

Problem 1-A uniform charge density $\rho=10^{-10} \mathrm{C} / \mathrm{m}^{3}$ is embedded in a hollow dielectric sphere with radius $R=4 \mathrm{~m}$ (grey part in the figure). A point charge, with value $Q=3 \cdot 10^{-9} \mathrm{C}$, is fixed in point $\mathrm{C}(2 R, 0)$. Another charge q, free to move and with value $-Q$, is placed at the sphere center. Determine the value of another point charge Q_{B} to be placed in $\mathrm{B}(R, 0)$ such that q is in equilibrium.

Solution

The electric field in $(0,0)$ due to the charged hollow sphere is zero, as stated by the Gauss' theorem:
$\int_{S} \vec{D} \cdot d \vec{S}=\int_{V} \rho d V$
As q is negative and Q positive, the latter will tend to attract q; therefore, q will be subject to the following force:

$$
\vec{F}_{C}=q \vec{E}_{Q}(0,0)=-|Q| \vec{E}_{Q}(0,0)=-|Q|\left[-\frac{|Q|}{4 \pi \varepsilon_{0}(2 R)^{2}} \vec{\mu}_{x}\right]=\frac{|Q|^{2}}{16 \pi \varepsilon_{0} R^{2}} \vec{\mu}_{x}
$$

In order to counterbalance the effect of Q in C , the charge to be placed in B must be negative so as to repulse q, which will be subject to:

$$
\vec{F}_{B}=q \vec{E}_{Q_{B}}(0,0)=-|Q| \vec{E}_{Q_{B}}(0,0)=-|Q|\left[\frac{\left|Q_{B}\right|}{4 \pi \varepsilon_{0}(R)^{2}} \vec{\mu}_{x}\right]=-\frac{|Q|\left|Q_{B}\right|}{4 \pi \varepsilon_{0} R^{2}} \vec{\mu}_{x}
$$

The equilibrium for q is reached if:
$\vec{F}=\vec{F}_{B}+\vec{F}_{C}=0$
which yields:

$$
\frac{|Q|\left|Q_{B}\right|}{4 \pi \varepsilon_{0} R^{2}}=\frac{|Q|^{2}}{16 \pi \varepsilon_{0} R^{2}}
$$

Therefore:

$$
\left|Q_{B}\right|=\frac{|Q|}{4}=7.5 \cdot 10^{-10} \mathrm{C} \rightarrow Q_{B}=-7.5 \cdot 10^{-10} \mathrm{C}
$$

Problem 2 - Let us consider the following distribution for the current density flowing inside a cylindrical wire (see the wire section in the figure with radius $a=0.5 \mathrm{~cm}$):

$$
\vec{J}=\left\{\begin{array}{ll}
-\frac{2 \rho}{a} \vec{a}_{z} & \rho \leq a \\
0 & \rho>a
\end{array} \quad \mathrm{~A} / \mathrm{m}^{2}\right.
$$

where ρ is the distance from the wire axis.
Calculate the magnetic field (full vector) in the following points $P_{0}(0,0,0), P_{1}(a / 2,0,0), P_{2}(-a / 2,0,0)$ e $P_{3}(2 a, 0,0)$.

Solution

The solution is easily achieved using the Ampère's theorem, i.e.:
$\int_{l} \vec{H} \cdot d \vec{l}=\int_{S} \vec{J} \cdot d \vec{S}$
For point $P_{0}, \vec{H}\left(P_{0}\right)=0$ because no current is included in the circle l.
For point P_{1}, Ampère's theorem becomes:
$|\vec{H}| 2 \pi \rho=\int_{0}^{\rho} \frac{2 r}{a} 2 \pi r d r=\frac{4 \pi}{3 a} \rho^{3} \Rightarrow \vec{H}\left(P_{1}\right)=-\left.\frac{2 \rho^{2}}{3 a} \vec{a}_{y}\right|_{P_{1}}=-8.3 \cdot 10^{-4} \vec{a}_{y} \quad \mathrm{~A} / \mathrm{m}$
For point P_{2}, the solution is the same as for point P 1 , but the magnetic field vector changes direction:
$\vec{H}\left(P_{1}\right)=8.3 \cdot 10^{-4} \vec{a}_{y} \quad \mathrm{~A} / \mathrm{m}$
Finally, for point P_{3} :

$$
|\vec{H}| 2 \pi \rho=\int_{0}^{a} \frac{2 r}{a} 2 \pi r d r=\frac{4 \pi}{3} a^{2} \Rightarrow \vec{H}=-\left.\frac{2 a^{2}}{3 \rho} \vec{a}_{y}\right|_{P_{3}}=-0.0017 \vec{a}_{y} \quad \mathrm{~A} / \mathrm{m}
$$

Problem 3 - A uniform plane wave (frequency $f=200 \mathrm{MHz}$) propagates in free space and impinges on a dielectric material $\left(\varepsilon_{r 2}=4, \mu_{r 2}=1, \sigma_{2}=4.5 \cdot 10^{-2} \mathrm{~S} / \mathrm{m}\right)$. The electric field of the incident wave at $(0,0,0)$ is $\vec{E}_{i}(0,0,0)=-j \vec{a}_{x} \mathrm{~V} / \mathrm{m}$. Calculate the electric field in $P\left(0,0, \lambda_{2}\right)$ and the power density carried by the wave in $P\left(0,0, \lambda_{2}\right)$ (λ_{2} is the wavelength in the second medium).

Solution

First, let us calculate the intrinsic impedance for the two media. For the first one:
$\eta_{1}=\eta_{0} \approx 377 \Omega$
For the second one, the loss tangent is $\boldsymbol{\sigma} / \boldsymbol{\omega \varepsilon} \approx \mathbf{1}$. Therefore no accurate approximations are possible:
$\eta_{2}=\sqrt{\frac{j \omega \mu_{2}}{\sigma+j \omega \varepsilon_{2}}}=146+j 61 \Omega$
The reflection coefficient is:
$\Gamma=\frac{\eta_{2}-\eta_{1}}{\eta_{2}+\eta_{1}}=-0.423+j 0.166$
Also, let us calculate the propagation constant for the second medium:
$\gamma_{2}=\alpha_{2}+j \beta_{2}=\sqrt{\left(j \omega \mu_{2}\right)\left(\sigma+j \omega \varepsilon_{2}\right)}=3.85+j 9.23 \quad 1 / \mathrm{m}$
The wavelength is obtained from β_{2} as:
$\lambda_{2}=\frac{2 \pi}{\beta_{2}} \approx 0.68 \mathrm{~m}$
The field transmitted into the second medium is:
$\vec{E}_{2}(0,0,0)=\vec{E}_{i}(0,0,0)(1+\Gamma)=(0.166-j 0.577) \vec{\mu}_{x} \quad \mathrm{~V} / \mathrm{m}$
The electric field in P is therefore:
$\vec{E}_{2}(P)=\vec{E}_{2}(0,0,0) e^{-\gamma_{2} \lambda_{2}}=(0.012-j 0.042) \vec{\mu}_{x} \quad \mathrm{~V} / \mathrm{m}$
Finally, the power density is:

$$
S(P)=\frac{1}{2} \frac{\left|\vec{E}_{2}(P)\right|^{2}}{\left|\eta_{2}\right|} \cos \left(\angle \eta_{2}\right)=5.5 \mu \mathrm{~W} / \mathrm{m}^{2}
$$

Problem 4 - A source with voltage $V_{g}=50 \mathrm{~V}$ and internal impedance $Z_{g}=100 \Omega$ is connected to a $\operatorname{load} Z_{L}=150 \Omega$ by a transmission line with characteristic impedance $Z_{C}=50 \Omega$. The line length is $l=4 \mathrm{~m}$ and the frequency is $f=300 \mathrm{MHz}$.

Calculate:
a) The power absorbed by the load
b) The voltage at the beginning of the line (section BB below), V_{B}
c) The trend of V_{B} in time

Solution

a) The wavelength is:
$\lambda=\lambda_{0}=c / f=1 \mathrm{~m}$
The reflection coefficient at section AA is:
$\Gamma_{A}=\frac{Z_{L}-Z_{C}}{Z_{L}+Z_{C}}=0.5$
The reflection coefficient at section $B B$ is:
$\Gamma_{B}=\Gamma_{A} e^{-j 2 \beta 1}=\Gamma_{A} e^{-j 2\left(\frac{2 \pi}{\lambda}\right) 4 \lambda}=\Gamma_{A} e^{-j 16 \pi}=0.5$
Therefore, the input impedance is:
$Z_{B}=Z_{C} \frac{1+\Gamma_{B}}{1+\Gamma_{B}}=150 \Omega$
The reflection coefficient for the source is:
$\Gamma_{g}=\frac{Z_{B}-Z_{g}}{Z_{B}+Z_{g}}=0.2$
Therefore, the power crossing section BB, i.e. reaching the load is:
$P_{L}=P_{A V}\left(1-\left|\Gamma_{g}\right|^{2}\right)=3 \mathrm{~W}$
b) The voltage at the beginning of the line is:

$$
V_{B}=V_{g} \frac{Z_{B}}{Z_{B}+Z_{g}}=30 \mathrm{~V}
$$

c) The trend of V_{B} in time is given by:

$$
v_{B}(t)=\operatorname{Re}\left[V_{B} e^{j \omega t}\right]=30 \cos (\omega t) \quad \mathrm{V}
$$

