FUNDAMENTALS OF ELECTROMAGNETIC FIELDS - June $29^{\text {th }}, 2018$

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$

Name and surname
Identification number
Signature

Problem 1 - A uniform charge density $\rho=10^{-10} \mathrm{C} / \mathrm{m}^{3}$ is embedded in a dielectric sphere with radius $R=2 \mathrm{~m}$ (grey part in the figure); the center of the sphere is fixed in $\mathrm{A}(-4,0)$. A point charge, with unknown value Q, is fixed in point $\mathrm{B}(4,0)$. Another charge $q=1 \mathrm{nC}$, free to move, is placed in $\mathrm{C}(0,4)$. Determine the sign and the value of the charge Q in B such that the charge q in C is subject to a force $\vec{F}=k \vec{\mu}_{x}$ (only component along x). Also, determine k.

Solution

The electric field in C due to the charged sphere is given by the Gauss' theorem:
$\int_{S} \vec{D} \cdot d \vec{S}=\int_{V} \rho d V$
Solving the equation, we obtain:
$\vec{E}_{1}=\frac{Q_{T}}{4 \pi \varepsilon_{0} A C^{2}} \vec{\mu}_{A C}=0.94 \vec{\mu}_{A C} \mathrm{~V} / \mathrm{m}$
where $Q_{T}=\rho 4 / 3 \pi R^{3}=3.35 \mathrm{nC}$.
As both Q_{T} and q are positive, the latter will tend to move in the direction of the electric field \vec{E}_{1} (see figure below). In order to have a total electric field \vec{E}, composition of \vec{E}_{1} (given by Q_{T}) and of \vec{E}_{2} (given by Q), directed as x, Q must be negative and its absolute value be that of Q_{T}, i.e.:
$Q=-Q_{T}=-3.35 \mathrm{nC}$.

As a result:

$$
\vec{E}_{T}=2\left|\vec{E}_{1}\right| \cos \frac{\pi}{4} \vec{\mu}_{x}=1.33 \vec{\mu}_{x} \mathrm{~V} / \mathrm{m}
$$

Finally, the force acting on q, due both to Q_{T} and Q, is:

$$
\vec{F}=q \vec{E}_{T}=1.33 \vec{\mu}_{x} \mathrm{nN}
$$

Problem 2-A constant current flows through the wires reported in the picture below: wire 1 lies on the y axis and its current is $I_{1}=1 \mathrm{~A}$, wire 2 ad 3 are parallel to x axis and their currents are $I_{2}=I_{3}=2 \mathrm{~A}(d=1 \mathrm{~m})$. An electron with charge $q=-1 \cdot 6 \cdot 10^{-19} \mathrm{C}$ is in $\mathrm{P}(2,0)$, travelling with velocity $\vec{v}=c \vec{\mu}_{x} \mathrm{~m} / \mathrm{s}$, being c the speed of light. Calculate:

1) The magnetic field in P.
2) The force which the electron in P is subject to (amplitude and direction).

Solution

The magnetic field in P will be given by the contributions coming from all the wires. Specifically, wire 1 will give the following contribution:
$\vec{H}_{1}(P)=-\frac{I_{1}}{2 \pi x_{P}} \vec{\mu}_{z}=-79.6 \vec{\mu}_{z} \mathrm{~mA} / \mathrm{m}$
The contributions from wires 2 and 3 in P cancel out: the two wires have the same currents, they are at the same distance from P and the two associated magnetic fields have opposite direction ($-\vec{\mu}_{z}$ for I_{2} and $\vec{\mu}_{z}$ for I_{3}). As a result:
$\vec{H}(P)=\vec{H}_{1}(P)+\vec{H}_{2}(P)+\vec{H}_{3}(P)=-79.6 \vec{\mu}_{z} \mathrm{~mA} / \mathrm{m}$
The electron is subject to Lorentz's force:
$\vec{F}(P)=q \vec{v} \times \mu_{0} \vec{H}(P)$
Considering the vector product operation and the negative sign for the electron charge, the resulting force is directed along $-\vec{\mu}_{y}$:
$\vec{F}(P)=q \vec{v} \times \mu_{0} \vec{H}(P)=q \mu_{0}|\vec{v}||\vec{H}(P)| \vec{\mu}_{y}=-4.8 \cdot 10^{-18} \vec{\mu}_{y} \mathrm{~N}$

Problem 3 - A uniform plane wave (frequency $f=1 \mathrm{GHz}$) propagates in free space and impinges on a dielectric material ($\varepsilon_{r 2}=9, \mu_{r 2}=3, \sigma_{2}=2 \cdot 10^{-4} \mathrm{~S} / \mathrm{m}$). The power density of the wave in $\mathrm{P}\left(0,0,10 \lambda_{2}\right.$) is $1 \mu \mathrm{~W} / \mathrm{m}^{2}$ (λ_{2} is the wavelength in the second medium). Calculate the power density of the incident wave in $\mathrm{Q}\left(0,0, \lambda_{1}\right)$ (λ_{1} is the wavelength in the first medium).

Solution

First, let us calculate the intrinsic impedance for the two media. For the first one:
$\eta_{1}=\eta_{0} \approx 377 \Omega$
For the second one, the loss tangent is $\sigma / \omega \varepsilon \approx 4 \cdot 10^{-4} \ll 1$. Therefore the second medium can be considered as a good dielectric:
$\eta_{2} \approx \sqrt{\frac{\mu_{r 2}}{\varepsilon_{r 2}}} \eta_{0}=217.5 \Omega$
The reflection coefficient is:
$\Gamma=\frac{\eta_{2}-\eta_{1}}{\eta_{2}+\eta_{1}}=-0.268$
Also, let us calculate the propagation constant for the second medium (using the approximation defined above):
$\gamma_{2}=\alpha_{2}+j \beta_{2} \approx \frac{\sigma}{2} \sqrt{\frac{\mu}{\varepsilon}}+j \frac{2 \pi f}{c} \sqrt{\varepsilon_{r 2} \mu_{r 2}}=0.0251+j 108.8 \quad 1 / \mathrm{m}$
The wavelength is obtained from β_{2} as:
$\lambda_{2}=\frac{2 \pi}{\beta_{2}} \approx 0.0577 \mathrm{~m}$
Therefore P has coordinates $(0.577 \mathrm{~m}, 0)$.
The power density in P is:
$S(P)=S_{i}\left(1-| |^{2}\right) e^{-2 \alpha_{2} x_{P}}$
where S_{i} is the incident power density: as there are no losses in medium 1, S_{i} is constant throughout medium 1, including in Q . Inverting such equation, we obtain:

$$
S(Q)=\frac{S(P)}{\left(1-\mid \Gamma^{2}\right) e^{-2 \alpha_{2} x_{\rho}}}=1.11 \mu \mathrm{~W} / \mathrm{m}
$$

Problem 4-A source with voltage $V_{g}=100 \mathrm{~V}$ and internal impedance $Z_{g}=50 \Omega$ is connected to a load $Z_{L}=100 \Omega$ by a transmission line with characteristic impedance $Z_{C}=100 \Omega$ and attenuation constant $\alpha=20 \mathrm{~dB} / \mathrm{km}$. The line length is $l=30 \mathrm{~m}$ and the frequency is $f=600 \mathrm{MHz}$.

Calculate:

a) The power absorbed by the load
b) The power dissipated along the line
c) The absolute value of the voltage at the load section (section AA), V_{A}

Solution

a) As the load is matched to the line $\left(Z_{L}=Z_{C}\right)$, the input impedance is simply $Z_{B}=Z_{L}$. Therefore the reflection coefficient at the generator section is:

$$
\Gamma_{g}=\frac{Z_{L}-Z_{g}}{Z_{L}+Z_{g}}=\frac{1}{3}
$$

As a result, the fraction of the power crossing section BB is:
$P_{B B}=P_{d}\left(1-\left|\Gamma_{g}\right|^{2}\right)=\frac{V_{g}^{2}}{8 Z_{g}}\left(1-\left|\Gamma_{g}\right|^{2}\right)=22.2 \mathrm{~W}$
Such power will be attenuated by the line and will afterwards reach the load. Therefore, the power absorbed by the load is:

$$
P_{L}=P_{B B} e^{-2 \alpha l}=19.4 \mathrm{~W}
$$

where $\alpha=20 /(1000 \cdot 8.686)=0.0023 \mathrm{~Np} / \mathrm{m}$.
b) The power dissipated along the line is simply given by:

$$
P_{l}=P_{B B}-P_{L}=2.9 \mathrm{~W}
$$

c) The absolute value of the voltage at the load section can be obtained by inverting the following equation:

$$
P_{L}=\frac{1}{2} \frac{\left|V_{A}\right|^{2}}{Z_{L}}
$$

Thus:

$$
\left|V_{A}\right|=\sqrt{2 P_{L} Z_{L}}=62.2 \quad \mathrm{~V}
$$

