

Please answer the following questions/problems, providing a meaningful explanation of the steps/computations involved. Please specify units for all numeric results requiring them, otherwise those results will be considered wrong. Allowed support material: books, notes, scientific calculator.

Exercise 1a (alternative to exercise 1b) [8 points]

In vacuum, a uniform volumetric charge density $\rho_v = 1.2 \cdot 10^{-3}$ C/m³ fills a spherical volume of radius R. Due to this distribution, a point charge q=-0.03C, located outside the sphere at a distance d=10cm from its center, is subject to a force F=35kN toward the center of the sphere.

- 1. Compute the radius R of the sphere.
- 2. Compute the total electric field (due to sphere and point charge) at the center of the sphere

Please answer the following questions/problems, providing a meaningful explanation of the steps/computations involved. Please specify units for all numeric results requiring them, otherwise those results will be considered wrong. Allowed support material: books, notes, scientific calculator.

Exercise 1b (alternative to exercise 1a) [8 points]

A bifilar line is made by two parallel wires both with radius a=1mm in a uniform medium with $\varepsilon_r=6$ and unknown μ_r and has an inductance per unit length of L_{pul}=2.47µH/m and each wire carries a DC current denoted as *I* (in opposite directions).

Under a quasistatic-approximation, the characteristic impedance of the line is known to be $Z_c=200\Omega$.

• Compute the distance *d* between the two wires and μ_r .

Hint: one wire contributes to the to the total flux per unit length of the bifilar line approximately by $\mu_0 \mu_r \frac{I}{2\pi} \ln(\frac{d}{a})$

Hint: the capacitance per unit length for the bifilar line has the approximate expression:

$$C_{pul} = \epsilon_0 \epsilon_r \frac{\pi}{\ln(\frac{d}{a})}$$

	094784 Fund. of Electromagnetic Fields	Date:
	Last Name:	First Name:
IICO	Personal code ("Persona"):	Signature:

Please answer the following questions/problems, providing a meaningful explanation of the steps/computations involved. Please specify units for all numeric results requiring them, otherwise those results will be considered wrong. Allowed support material: books, notes, scientific calculator.

Exercise 3 [12 pt]

A plane wave has electric field in time-domain given by:

$$\overline{\mathcal{E}}(t) = 3\frac{V}{m}\,\hat{\imath}_x \cos\left(\omega t - \frac{32}{m}z - \frac{\pi}{4}\right) \mathrm{e}^{-\frac{0.05}{m}z}$$

travelling in a good dielectric medium with $\epsilon_r'=2.5$ and $\mu_r=1$ and no conductivity ($\sigma_1=0$)

- 1. What is the frequency? What is the propagation direction? What is the wavelength?
- 2. What is the loss tangent of the dielectric (tan delta)?
- 3. Compute the phasor of the reflected electric field in z=0 if the wave above hits a perfect electric conductor (PEC) in z=0 (the normal of the conductor is along \hat{i}_z)
- 4. Compute the reflection coefficient instead if the wave above hits a good conductor with $\varepsilon_r'=1$, $\mu_r=1$, $\sigma=4\cdot10^2$ S/m in z=0 (the normal of the conductor is along \hat{l}_z)

	094784 Fund. of Electromagnetic Fields	Date:
	Last Name:	First Name:
ю	Personal code ("Persona"):	Signature:

Please answer the following questions/problems, providing a meaningful explanation of the steps/computations involved. Please specify units for all numeric results requiring them, otherwise those results will be considered wrong. Allowed support material: books, notes, scientific calculator.

Exercise 4 [12 pt]

A transmission line with the following equivalent parameters per unit length R=10hm/m, L=150nH/m, C=60pF/m, G=0.002S/m is terminated on a load impedance Z_i=(25-j10)Ohm. The transmission line is L=0.5m long and it must transport a signal at f=1.5GHz.

- 1. Compute the characteristic impedance Z_0 , the attenuation constant of the transmission line α in dB/m, the phase constant β in rad/m (approximations for low loss can be used) and the wavelength λ in the transmission line
- 2. What is the input impedance Z_{in}, looking toward the load into the line?
- 3. How much real power is delivered by a generator with amplitude Vg=10V and internal impedance 500hm to the input of the line? How much real power is dissipated by the load?

