

16 January 2023 EXAM

Please answer the following questions/problems, providing a meaningful explanation of the steps/computations involved. Please specify units for all numeric results requiring them, otherwise those results will be considered wrong. Allowed support material: books, notes, scientific calculator.

Exercise 1 [8 points]

A surface charge density $\rho_{s}=10^{-6} \mathrm{C} / \mathrm{m}^{2}$ uniformly covers an infinitely-long cylinder with radius $\mathrm{R}=1 \mathrm{~cm}$ in a homogeneous medium with unknown relative dielectric constant ε_{r}.
Knowing that the electrostatic potential at a distance $d=10 \mathrm{~cm}$ from the center is 1300 V lower than on the cylinder surface (with radius R):

1. starting from Gauss theorem, compute the dielectric constant of the medium surrounding the charge density
2. compute the electric field at the center of the charged cylinder

16 January 2023 EXAM

Please answer the following questions/problems, providing a meaningful explanation of the steps/computations involved. Please specify units for all numeric results requiring them, otherwise those results will be considered wrong. Allowed support material: books, notes, scientific calculator.

Exercise 2 [12 pt]

A plane wave in phasor form has an electric field which is directed along $\hat{\imath}_{x}$ with magnitude $10 \mathrm{~V} / \mathrm{m}$ and a magnetic field directed along \hat{l}_{y} with magnitude $0.053 \mathrm{~A} / \mathrm{m}$, both with phase 0°.
Assuming the medium in which this wave travels for $\mathrm{z}>0$ is lossless and non-magnetic ($\mu_{\mathrm{r}}=1$) and that there are no other waves propagating in the same region (the right one in the figure below):

1. compute the wave impedance and ε_{r};
2. compute the real power density carried by the wave and its direction of propagation.
3. If the wave above is the transmitted portion coming from normal incidence of a wave impinging upon a discontinuity in $z=0$, with the medium in $z<0$ being vacuum, compute the impinging electric and magnetic fields and the reflected electric and magnetic fields in $\mathrm{z}=0$ (phasor vectors)

16 January 2023 EXAM

Please answer the following questions/problems, providing a meaningful explanation of the steps/computations involved. Please specify units for all numeric results requiring them, otherwise those results will be considered wrong. Allowed support material: books, notes, scientific calculator.

Exercise 3 [12 pt]

A coaxial transmission line with inner radius $a=1 \mathrm{~mm}$ and outer radius $\mathrm{b}=4 \mathrm{~mm}$ is filled with a dielectric with $\varepsilon_{\mathrm{r}}=2.75 \cdot(1-\mathrm{j} 0.001)$ and $\mu_{\mathrm{r}}=1$. Conductors have conductivity $\sigma=10^{7} \mathrm{~S} / \mathrm{m}$ and are $\mathrm{t}=0.5 \mathrm{~mm}$ thick.

1. Compute the characteristic impedance recalling that the inductance per unit length is $\mathrm{L}=(\mu /(2 \pi)) \cdot \ln (\mathrm{b} / \mathrm{a})$ (from magnetostatic analysis), that the line is TEM and neglecting losses and using the quasistatic approximation.
2. Compute the skin depth (δ) for the conductors and, for the coaxial line, the wavelength ($\lambda=2 \pi / \beta$) and attenuation (α) constant at a frequency of 15 GHz , including all losses while using the low-loss approximation (approximate the resistance of each conductor as «surface resistance»/perimeter)
3. Compute the impedance observed from the input of a segment (length L equal to 20 wavelengths) of such coaxial line when the other end is left disconnected (open circuited) and comment if the result was expected.

POLITECNICO MILANO 1863 Academic year 2022/2023	094784 Fund. of Electromagnetic Fields	Date:
	Last Name:	First Name:
	Personal code ("Persona"):	Signature:

16 January 2023 EXAM

Please answer the following questions/problems, providing a meaningful explanation of the steps/computations involved. Please specify units for all numeric results requiring them, otherwise those results will be considered wrong. Allowed support material: books, notes, scientific calculator.

Exercise 1 [8 points]

A surface charge density $\rho_{s}=10^{-6} \mathrm{C} / \mathrm{m}^{2}$ uniformly covers an infinitely-long cylinder with radius $\mathrm{R}=1 \mathrm{~cm}$ in a homogeneous medium with unknown relative dielectric constant ε_{r}.
Knowing that the electrostatic potential at a distance $\mathrm{d}=10 \mathrm{~cm}$ from the center is 1300 V lower than on the cylinder surface (with radius R):

1. starting from Gauss theorem, compute the dielectric constant of the medium surrounding the charge density
2. compute the electric field at the center of the charged cylinder

Solution

Thanks to symmetry, the electrostatic field outside the cylinder depends only on the distance from the center r and the electric field has only radial component E_{r}, and so does the electric flux density $D=D_{r}(r) \hat{i}_{r}$, in cylindrical coordinates.
Applying Gauss theorem on a cylindrical surface S of radius d, centered on the cylinder, larger than the cylinder ($r>R$) and of finite length h :

$$
\begin{aligned}
\oiint_{S} \bar{D} \cdot \overline{d S} & =\iiint_{V} \rho_{V} d V \\
\mathrm{D}_{r}(r) \int_{0}^{h} \int_{0}^{2 \pi} r d \varphi d z & =D_{r}(r) 2 \pi r h=\rho_{s} 2 \pi R h \\
\bar{D}(d) & =\rho_{s} \frac{R}{r} \widehat{i_{r}}
\end{aligned}
$$

The electric field is hence $\mathrm{E}=\mathrm{D} / \varepsilon$, but $\varepsilon=\varepsilon_{0} \varepsilon_{\mathrm{r}}$ and ε_{r} is unknown.
The electrostatic potential variation moving from a point on the cylinder surface (R) to a point further away (d) is:

$$
\Delta V_{R \rightarrow d}=-\int_{R}^{d} \bar{E}_{\circ} d r \hat{\imath}_{r}=-\rho_{s} \frac{R}{\epsilon} \int_{R}^{d} \frac{1}{r} d r=-\rho_{s} \frac{R}{\epsilon} \ln \left(\frac{d}{R}\right)=-1300 \mathrm{~V}
$$

Hence epsilon can be found to be $\varepsilon=1.771 \cdot 10^{-11} \mathrm{~F} / \mathrm{m}=\varepsilon_{0} \varepsilon_{\mathrm{r}}$, from which $\varepsilon_{\mathrm{r}}=2$.
At the center of the cylinder ($r=0$), Gauss theorem states that the electric flux density due to the charged cylinder is 0 , since the enclosed charge is null. Hence the electric field is also null.

16 January 2023 EXAM

Please answer the following questions/problems, providing a meaningful explanation of the steps/computations involved. Please specify units for all numeric results requiring them, otherwise those results will be considered wrong. Allowed support material: books, notes, scientific calculator.

Exercise 2 [12 pt]

A plane wave in phasor form has an electric field which is directed along $\hat{\imath}_{x}$ with magnitude $10 \mathrm{~V} / \mathrm{m}$ and a magnetic field directed along $\hat{\imath}_{y}$ with magnitude $0.053 \mathrm{~A} / \mathrm{m}$, both with phase 0°.
Assuming the medium in which this wave travels for $\mathrm{z}>0$ is lossless and non-magnetic ($\mu_{\mathrm{r}}=1$) and that there are no other waves propagating in the same region (the right one in the figure below):

1. compute the wave impedance and ε_{r};
2. compute the real power density carried by the wave and its direction of propagation.
3. If the wave above is the transmitted portion coming from normal incidence of a wave impinging upon a discontinuity in $z=0$, with the medium in $z<0$ being vacuum, compute the impinging electric and magnetic fields and the reflected electric and magnetic fields in $\mathrm{z}=0$ (phasor vectors)

Non-vacuum (for $z>0$)

Solution

The wave impedance for a single plane wave is merely the ratio of the electric and magnetic field phasors amplitude: $\bar{E}=10 \mathrm{~V} / \mathrm{m} \hat{\imath}_{x} ; \bar{H}=0.053 \mathrm{~A} / \mathrm{m} \hat{\imath}_{y}$. Thus $\eta=10 \mathrm{~V} / \mathrm{m} /(0.053 \mathrm{~A} / \mathrm{m})=188.7 \Omega$.
In a lossless medium, the wave impedance is given by $\eta=\operatorname{sqrt}(\mu / \varepsilon)=37 \Omega \operatorname{sqrt}\left(\mu_{r} / \varepsilon_{r}\right)$
from which $\varepsilon_{\mathrm{r}}=4$.
The real power density carried by a plane wave and the propagation direction are given by the Poynting vector:
$\bar{S}=1 / 2 \operatorname{Real}\left(\bar{E} \times \bar{H}^{*}\right)=0.510 \mathrm{~V} / \mathrm{m} \mathrm{0.053A/m} \mathrm{\hat{} \mathrm{\imath}_{x} \times \hat{\imath}_{y}=0.265 \mathrm{~W} / \mathrm{m}^{2} \hat{\imath}_{z}, ~}$
In normal incidence, the reflection coefficient relating the impinging and reflected electric fields at the discontinuity between the two media (medium 1 where the impinging and reflected waves exist, 2 where only the transmitted wave exists) is $\Gamma=\left(\eta_{2}-\eta_{1}\right) /\left(\eta_{2}+\eta_{1}\right)$.
The electric field transmitted is related to the impinging one by the transmission coefficient $T=1+\Gamma$ Since the medium in $z<0$ is air, the wave impedance is $\eta_{1}=377 \Omega$, whereas the impedance $\eta=188.7 \Omega$ computed earlier is η_{2}.
Then $\Gamma=-0.33$ and $T=0.67$.
Since the known electric field \bar{E} is the transmitted one (evaluated at the discontinuity), the impinging one at $\mathrm{z}=0$ is merely:
$\bar{E}^{+}=\frac{\bar{E}}{T}=14.9 \frac{V}{m} \hat{\imath}_{x}$ and the magnetic field is, following $\eta_{1}=E_{x}{ }^{+} / H_{y}{ }^{+}, \bar{H}^{+}=40 \frac{\mathrm{~mA}}{\mathrm{~m}} \hat{\imath}_{y}$ whereas the reflected one in $\mathrm{z}=0$ is $\bar{E}^{-}=\Gamma \bar{E}^{+}=-4.9 \mathrm{~V} / \mathrm{m} \hat{\imath}_{x}$ and $-\eta_{1}=E_{x}{ }^{-} / H_{y}{ }^{-}: \bar{H}^{-}=13 \frac{\mathrm{~mA}}{\mathrm{~m}} \hat{\imath}_{y}$

16 January 2023 EXAM

Please answer the following questions/problems, providing a meaningful explanation of the steps/computations involved. Please specify units for all numeric results requiring them, otherwise those results will be considered wrong. Allowed support material: books, notes, scientific calculator.

Exercise 3 [12 pt]

A coaxial transmission line with inner radius $a=1 \mathrm{~mm}$ and outer radius $\mathrm{b}=4 \mathrm{~mm}$ is filled with a dielectric with $\varepsilon_{\mathrm{r}}=2.75 \cdot(1-\mathrm{j} 0.001)$ and $\mu_{\mathrm{r}}=1$. Conductors have conductivity $\sigma=10^{7} \mathrm{~S} / \mathrm{m}$ and are $\mathrm{t}=0.5 \mathrm{~mm}$ thick.

1. Compute the characteristic impedance recalling that the inductance per unit length is $\mathrm{L}=(\mu /(2 \pi)) \cdot \ln (\mathrm{b} / \mathrm{a})$ (from magnetostatic analysis), that the line is TEM and neglecting losses and using the quasistatic approximation.
2. Compute the skin depth (δ) for the conductors and, for the coaxial line, the wavelength ($\lambda=2 \pi / \beta$) and attenuation (α) constant at a frequency of 15 GHz , including all losses while using the low-loss approximation (approximate the resistance of each conductor as «surface resistance»/perimeter)
3. Compute the impedance observed from the input of a segment (length L equal to 20 wavelengths) of such coaxial line when the other end is left disconnected (open circuited) and comment if the result was expected.

Solution

In the quasistatic approximation for a TEM line, L and C per unit length are related:
$\mathrm{LC}=\varepsilon \mu \rightarrow \mathrm{C}=\varepsilon \mu / \mathrm{L}$ where $\mathrm{L}=277 \mathrm{nH} / \mathrm{m}$ and thus $\mathrm{C}=110.4 \mathrm{pF} / \mathrm{m}$.
Using the low-loss approximation ($\mathrm{R} \ll \omega \mathrm{L}, \mathrm{G} \ll \omega \mathrm{C}$): $\quad \mathrm{Z}_{0}=\operatorname{sqrt}(\mathrm{L} / \mathrm{C})=500 \mathrm{hm}$
Ohmic loss in the conductors can be modeled by considering that current will flow only through an annulus of depth δ (skin depth) $=\operatorname{sqrt}(2 /(\omega \mu \sigma))=1.3 \mu \mathrm{~m}$. This is much smaller than the 0.5 mm conductor thickness and thus the skin depth is responsible for limiting the current flow.
The surface resistance is thus $\mathrm{Rs}=1 /(\delta \sigma)=0.077 \Omega / \square$ and the resistance of each conductor is:
$R_{a}=1 /(\sigma \delta 2 \pi a)=R s /$ perimeter $_{a}=12.2 \Omega / m ; \quad R_{b}=1 /(\sigma \delta 2 \pi b)=R s /$ perimeter $_{b}=3.06 \Omega / \mathrm{m}$
The total resistance per unit length of the transmission line is hence $R=R a+R b=15.3 \Omega / \mathrm{m}$.
Dielectric losses can be modeled by observing that the actual capacitance will depend on dielectric loss by means of the imaginary part: $\mathrm{G}=\omega \mathrm{C} \tan _{\delta}$ where $^{\tan } \mathrm{n}_{\delta}=10^{-3}$ and thus $\mathrm{G}=0.01 \mathrm{~S} / \mathrm{m}$.
The attenuation constant and phase constant thus are:

$$
\begin{aligned}
& \alpha=G^{*} Z_{0} / 2+R / 2 / Z_{0}=0.25 \mathrm{~Np} / \mathrm{m}+0.153 \mathrm{~Np} / \mathrm{m}=0.403 \mathrm{~Np} / \mathrm{m}=3.5 \mathrm{~dB} / \mathrm{m} \\
& \beta=\omega \operatorname{sqrt}(\mathrm{LC})=521.189 \mathrm{rad} / \mathrm{m} \rightarrow \lambda=2 \pi / \beta=12 \mathrm{~mm} \rightarrow \text { The line is } L=20 \lambda=24 \mathrm{~cm}
\end{aligned}
$$

$Z_{\text {in }}$ depends on the refl. coeff. at the input of the line $\left(\Gamma_{\text {in }}\right)$. This depends on the refl. coeff. at the load (Γ_{L}).
Since the load is an open circuit, $Z_{L}=$ infinity and thus $\Gamma_{L}=\left(Z_{L}-Z_{0}\right) /\left(Z_{L}+Z_{0}\right)=+1$ is the ratio between the backward and the forward voltage waves at the load section.
The same ratio can be evaluated at the input of the line:
$\Gamma_{\text {in }}=\Gamma_{L} e^{-2 \gamma L}=1 \cdot e^{-2 \beta L} e^{-2 \alpha L}=e^{-2 \alpha L}=0.824$
From which the input impedance at the input of the line is obtained $Z_{\text {in }}=Z_{0}\left(1+\Gamma_{\text {in }}\right) /\left(1-\Gamma_{\text {in }}\right)=518 \Omega$.
Comment: a lossless line with length multiple of λ merely presents the same load impedance at its input. If such line is left open it would thus present infinite input impedance. Due to the non-zero attenuation constant α, this behavior is limited: only a very-high input impedance is in fact observed at the input. If the line were much longer, the attenuation would further act and the input impedance would tend toward ZO.

