POLITECNICO MILANO 1863 Academic year 2022/2023	094784 Fund. of Electromagnetic Fields	Date:
	Last Name:______	First Name:
	Student ID ("Persona" or "Matricola"):	Signature:

07 July 2023 EXAM

Please answer the following questions/problems, providing a meaningful explanation of the steps/computations involved. Please specify units for all numeric results requiring them, otherwise those results will be considered wrong. Allowed support material: books, notes, scientific calculator.

Exercise 1 [8 points]

A parallel plate capacitor has capacitance of 0.2 nF . The total charge on each of the plates is $\mathrm{Q}=0.2 \mathrm{nC}$, and the plates are circular. The capacitor is filled with $\mathrm{ABS}(\varepsilon r=3.1, \mu \mathrm{r}=1)$. Fields can be assumed to be 0 outside the capacitor and any fringing fields can be neglected. Fields between the plates are constant.

1. Compute the spacing d and radius R of the plates so that the electrostatic field between the two plates is at most 0.01% of the dielectric strength of ABS (dielectric strength of $\mathrm{ABS}=15 \mathrm{kV} / \mathrm{mm}$). Compute the potential difference $\Delta \mathrm{V}$.
2. Compute the surface charge density ρ_{S} on the plates, assuming it to be uniform
3. Considering now the finite resistivity of $\operatorname{ABS}\left(\rho=10^{16} \Omega \cdot \mathrm{~cm}\right)$, compute the volumetric current density J which leaks between the plates maintained at $\Delta \mathrm{V}$.

07 July 2023 EXAM

Please answer the following questions/problems, providing a meaningful explanation of the steps/computations involved. Please specify units for all numeric results requiring them, otherwise those results will be considered wrong. Allowed support material: books, notes, scientific calculator.

Exercise 2 [12 pt]

A plane wave at a frequency of 25 GHz propagates in "Medium 1 " from negative z toward $+z$ with the electric field directed along x and the magnetic field along y . For this wave in $\mathrm{z}=0$, the electric field component phasor is $15 \mathrm{~V} / \mathrm{m}$, whereas the magnetic field component phasor is $0.0563 \mathrm{~A} / \mathrm{m}$.

1. Compute the dielectric permittivity ($\varepsilon_{\mathrm{r} 1}$, real), the phase constant $\left(\beta_{1}\right)$, the attenuation constant $\left(\alpha_{1}\right)$ and wavelength $\left(\lambda_{1}\right)$ in Medium 1, assuming it to be lossless and non-magnetic ($\mu_{r 1}=1$).
2. The wave impinges in $\mathrm{z}=0$ against a material with dielectric permittivity $\varepsilon_{\mathrm{r} 2}=3$ (real), $\mu_{\mathrm{r} 2}=1$, $\sigma_{2}=1.5 \cdot 10^{2} \mathrm{~S} / \mathrm{m}$ extending in the left half space ($z>0$): compute the skin depth, complex impedance and the reflection coefficient Γ (use approximations if applicable).

Medium 2 (for $z>0$)

POLITECNICO MILANO 1863 Academic year 2022/2023	094784 Fund. of Electromagnetic Fields	Date:
	Last Name:______	First Name:
	Student ID ("Persona" or "Matricola"):	Signature:

07 July 2023 EXAM

Please answer the following questions/problems, providing a meaningful explanation of the steps/computations involved. Please specify units for all numeric results requiring them, otherwise those results will be considered wrong. Allowed support material: books, notes, scientific calculator.

Exercise 3 [12 pt]

A coaxial cable with a PEC conductors with inner radius $a=1.2 \mathrm{~mm}$ and outer radius $\mathrm{b}=3.6 \mathrm{~mm}$, filled with teflon $\left(\varepsilon_{r}=2.04, \tan _{\delta \varepsilon}=0, \sigma=0, \mu_{r}=1\right)$ carries a wave toward $+z$ with power $\mathrm{P}^{+}(0)=500 \mathrm{~W}$ at 18 GHz .

1. Compute the primary parameters of this transmission line: capacitance, inductance, resistance, conductance per unit length (C, L, R, G). Recall that $L=(\mu /(2 \pi)) \cdot \ln (b / a)$, and that this coaxial cable is a low-loss TEM line ($\mathrm{LC}=\mu \varepsilon$)
2. Compute the characteristic impedance, the attenuation constant α (in dB / m), the phase constant β (in $\% / \mathrm{mm}$) and write the amplitude of the voltage wave propagating toward +z .
3. The coaxial cable is terminated by a resistance $\mathrm{Z}=10 \mathrm{hm}$. Compute the maximum total voltage along the coaxial cable.

07 July 2023 EXAM

Please answer the following questions/problems, providing a meaningful explanation of the steps/computations involved. Please specify units for all numeric results requiring them, otherwise those results will be considered wrong. Allowed support material: books, notes, scientific calculator.

Exercise 1 [8 points]

A parallel plate capacitor has capacitance of 0.2 nF . The total charge on each of the plates is $\mathrm{Q}=0.2 \mathrm{nC}$, and the plates are circular. The capacitor is filled with $\mathrm{ABS}(\varepsilon r=3.1, \mu \mathrm{r}=1)$. Fields can be assumed to be 0 outside the capacitor and any fringing fields can be neglected. Fields between the plates are constant.

1. Compute the spacing d and radius R of the plates so that the electrostatic field between the two plates is at most 0.01% of the dielectric strength of ABS (dielectric strength of $A B S=15 \mathrm{kV} / \mathrm{mm}$). Compute the potential difference $\Delta \mathrm{V}$.
2. Compute the surface charge density ρ_{S} on the plates, assuming it to be uniform

3. Considering now the finite resistivity of $\operatorname{ABS}\left(\rho=10^{16} \Omega \cdot \mathrm{~cm}\right)$, compute the volumetric current density J which leaks between the plates maintained at $\Delta \mathrm{V}$.

Solution

The capacitance between two charged bodies (Q and $-Q$), by definition, is $C=Q / \Delta V$.
In a parallel plate capacitor the electrostatic field is constant in the whole capacitor and is directed away from the positively-charged plate: $E \hat{i}_{z}$
The electrostatic potential between the two plates corresponding to this electric field is thus:
$\Delta V_{\{-Q \rightarrow+Q\}}=-\Delta V_{\{z=0 \rightarrow z=d\}}=\int_{0}^{d} E \hat{\imath}_{z} \cdot \hat{\imath}_{z} d z=E d$ and $\Delta \mathrm{V}=\mathrm{Q} / \mathrm{C}=1 \mathrm{~V}$
Therefore, enforcing that $\mathrm{E}=15 \mathrm{kV} / \mathrm{mm} / 10000=1.5 \mathrm{~V} / \mathrm{mm}=1500 \mathrm{~V} / \mathrm{m}, \mathrm{d}=\mathrm{Q} / \mathrm{C} / \mathrm{E}=0.667 \mathrm{~mm}$.
The needed radius to obtain the required capacitance is obtained from the expression of capacitance.
For a parallel plate capacitor with circular plates the formula is:
$C=\pi R^{2} \varepsilon / d \rightarrow R=s q r t(d C / \pi / \varepsilon 0 / \varepsilon r)=3.93 \mathrm{~cm}$
Derivation (not needed):
Applying Gauss theorem to a cylindrical surface enclosing only the positive plate:
$\oiint_{S} \bar{D} \cdot \overline{d S}=\iiint_{V} \rho_{V} d V \rightarrow \mathrm{D} \int_{0}^{R} \int_{0}^{2 \pi} r d \varphi d r=D \frac{R^{2}}{2} 2 \pi=D R^{2} \pi \quad=Q \rightarrow E=D / \varepsilon=\mathrm{Q} /\left(\pi R^{2} \varepsilon\right)$ $\Delta \mathrm{V}=\mathrm{Ed}=\mathrm{Qd} /\left(\pi \mathrm{R}^{2} \varepsilon\right) \rightarrow \mathrm{C}=\mathrm{Q} / \Delta \mathrm{V}=\left(\mathrm{Q} \pi \mathrm{R}^{2} \varepsilon\right) /(\mathrm{Qd})=\pi \mathrm{R}^{2} \varepsilon / \mathrm{d}$

Surface charge density, assuming uniform distribution: $\rho_{s}=Q /\left(\pi R^{2}\right)=41.2 n C / m^{2}$
Resistivity ρ is related to conductivity $\sigma: \sigma=1 / \rho=10^{-16} \mathrm{~S} / \mathrm{m}$. The leakage current is thus a current which flows through the capacitor while charged.
The relation between current density J and electric field is $\mathrm{J}=\sigma \mathrm{E}=0.15 \mathrm{pA} / \mathrm{m}^{2}$. J is hence directed as E , thus from the positively charged plate to the negatively charged one. No current flows outside of the plates due to the fields assumed 0 .
The total leakage current (not required) is hence: $I=J \pi R^{2}=0.73 p A$
This is confirmed by computing the total resistance of the ABS cylinder:
$\mathrm{R}=\rho \mathrm{d} /\left(\pi \mathrm{R}^{2}\right)=1.37 \cdot 10^{15} \Omega$, through which flows a current $\mathrm{I}=\Delta \mathrm{V} / \mathrm{R}=0.73 \mathrm{pA}$

MILANO 1863 Academic year 2022/2023	094784 Fund. of Electromagnetic Fields	Date:
	Last Name:	First Name:
	Student ID ("Persona" or "Matricola"):	Signature:

07 July 2023 EXAM

Please answer the following questions/problems, providing a meaningful explanation of the steps/computations involved. Please specify units for all numeric results requiring them, otherwise those results will be considered wrong. Allowed support material: books, notes, scientific calculator.

Exercise 2 [12 pt]

A plane wave at a frequency of 25 GHz propagates in "Medium 1 " from negative z toward $+z$ with the electric field directed along x and the magnetic field along y. For this wave in $z=0$, the electric field component phasor is $15 \mathrm{~V} / \mathrm{m}$, whereas the magnetic field component phasor is $0.0563 \mathrm{~A} / \mathrm{m}$.

1. Compute the dielectric permittivity ($\varepsilon_{\mathrm{r} 1}$, real), the phase constant $\left(\beta_{1}\right)$, the attenuation constant $\left(\alpha_{1}\right)$ and wavelength $\left(\lambda_{1}\right)$ in Medium 1, assuming it to be lossless and non-magnetic ($\mu_{r 1}=1$).
2. The wave impinges in $\mathrm{z}=0$ against a material with dielectric permittivity $\varepsilon_{\mathrm{r} 2}=3$ (real), $\mu_{\mathrm{r} 2}=1$,
$\sigma_{2}=1.5 \cdot 10^{2} \mathrm{~S} / \mathrm{m}$ extending in the left half space ($z>0$): compute the skin depth, complex impedance and the reflection coefficient Γ (use approximations if applicable).

Solution

For a $+z$-travelling plane wave, the electric and magnetic fields are orthogonal to z and orthogonal to each other. Their cross product must be directed along $+z$.
The vectors in $\mathrm{z}=0$, in phasor form, can be written as $\mathrm{E}^{+}=\mathrm{E}^{+}{ }_{x} \hat{\mathrm{x}}_{x}$ and $\mathrm{H}^{+}=\mathrm{H}^{+}{ }_{y} \hat{\mathrm{y}}_{y}$, so that the real Poynting vector $\mathrm{S}^{+}=1 / 2 \operatorname{Real}\left(\mathrm{E}^{+} \times \mathrm{H}^{+*}\right)$ is a positive quantity along \hat{i}_{z} (power density carried by the wave)
In such a setting, the electric and magnetic phasor components are related by the impedance of the medium $\eta: E_{x} / H_{y}=\eta_{1}$. The wave impedance can be computed in general from its expression depending on the complex propagation constant $\gamma_{1}=\alpha_{1}+j \beta_{1}: \eta_{1}=j \omega \mu_{1} / \gamma_{1}$. The propagation constant is given by: $\gamma_{1}=\operatorname{sqrt}\left(\left(\sigma_{1}+j \omega \varepsilon_{1}\right) j \omega \mu_{1}\right)$. The medium 1 is lossless, hence $\gamma_{1}=j \omega \operatorname{sqrt}\left(\mu_{1} \varepsilon_{1}\right), \alpha_{1}=0$ and $\beta_{1}=\omega \operatorname{sqrt}\left(\mu_{1} \varepsilon_{1}\right)$. The expression of the impedance thus becomes: $\eta_{1}=\operatorname{sqrt}\left(\mu_{1} / \varepsilon_{1}\right)$. Since $\eta_{1}=E_{x} / H_{y}=266 \Omega, \varepsilon_{r 1}=\mu_{0} / \varepsilon_{0} / \eta_{1}{ }^{2}=2$. Finally, $\beta_{1}=740.98 \mathrm{rad} / \mathrm{m}$, from which $\lambda_{1}=2 / \pi / \beta_{1}=8.5 \mathrm{~mm}$.

The material in $\mathrm{z}>0$ is lossy, due to the non-zero conductivity.
To be a good dielectric, the loss terms must be negligible: $\sigma_{2} \ll \omega \varepsilon_{2}$. In this case $\omega \varepsilon_{2}=4.17$, thus the good dielectric approximation is not valid.
Conversely, the conductive term dominates: $\sigma_{2} \gg \omega \varepsilon_{2}$, so the good conductor approximation can be used. In an ideal conductor (with $\sigma=$ infinity), electrons move almost freely and thus react to any applied electric field to make it zero in the metal itself. As a consequence, the total electric field on the surface of the conductor is forced to be zero. Therefore, for a plane wave impinging on a good conductor one can expect a reflected wave with similar amplitude to the impinging one but opposite phase of electric field in $\mathrm{z}=0$.
For a good conductor, the approximation states: $\gamma_{2}{ }^{\sim} \operatorname{sqrt}\left(j \omega \mu_{2} \sigma_{2}\right)=(1+\mathrm{j}) / \mathrm{sqrt}(2) \operatorname{sqrt}\left(\omega \mu_{2} \sigma_{2}\right)=3848(1+\mathrm{j}) 1 / \mathrm{m}$, from which $\alpha_{2}=3848 \mathrm{~Np} / \mathrm{m}=33.4 \mathrm{~dB} / \mathrm{mm}$ and $\beta_{2}=3848 \mathrm{rad} / \mathrm{m}$.
The skin depth is defined as an equivalent penetration length into the material, beyond which the fields are very small. Due to the exponential decay of a wave in a lossy medium exp ${ }^{-\alpha z}$, the skin depth is found as
$\delta_{2}=1 / \alpha_{2}=0.26 \mathrm{~mm}$, coinciding with the expression $\delta_{2}=\operatorname{sqrt}\left(2 /\left(\omega \mu_{2} \sigma_{2}\right)\right)$.
The wave impedance in the medium 2 is also approximated as a good conductor:
$\eta_{2}=(1+\mathrm{j}) \mathrm{sqrt}\left(\omega \mu_{2} / 2 / \sigma_{2}\right)=25.6(1+\mathrm{j}) \Omega$.
The reflection coefficient is: $\Gamma=\left(\eta_{2}-\eta_{1}\right) /\left(\eta_{2}+\eta_{1}\right)=-0.81+0.159 j=0.826 \angle 169^{\circ}$ (if Medium 2 were PEC, $\Gamma=-1$).

POLITECN Academic year 2022/2023	094784 Fund. of Electromagnetic Fields	Date:
	Last Name:_____	First Name:
	Student ID ("Persona" or "Matricola"):	Signature:

07 July 2023 EXAM

Please answer the following questions/problems, providing a meaningful explanation of the steps/computations involved. Please specify units for all numeric results requiring them, otherwise those results will be considered wrong. Allowed support material: books, notes, scientific calculator.

Exercise 3 [12 pt]

A coaxial cable with a PEC conductors with inner radius $a=1.2 \mathrm{~mm}$ and outer radius $\mathrm{b}=3.6 \mathrm{~mm}$, filled with teflon $\left(\varepsilon_{r}=2.04, \tan _{\delta \varepsilon}=0, \sigma=0, \mu_{r}=1\right)$ carries a wave toward $+z$ with power $\mathrm{P}^{+}(0)=500 \mathrm{~W}$ at 18 GHz .

1. Compute the primary parameters of this transmission line: capacitance, inductance, resistance, conductance per unit length (C, L, R, G). Recall that $L=(\mu /(2 \pi)) \cdot \ln (b / a)$, and that this coaxial cable is a low-loss TEM line ($\mathrm{LC}=\mu \varepsilon$)
2. Compute the characteristic impedance, the attenuation constant α (in dB / m), the phase constant β (in $\% / \mathrm{mm}$) and write the amplitude of the voltage wave propagating toward +z .
3. The coaxial cable is terminated by a resistance $Z=100 \mathrm{hm}$. Compute the maximum total voltage along the coaxial cable.

Solution

L can be immediately computed using the provided formula: $\mathrm{L}=219.7 \mathrm{nH} / \mathrm{m}$.
C can be obtained by using the relation for TEM lines: $L C=\mu \varepsilon$: $C=\mu \varepsilon / L=103 p F / m$
R takes into account the power lost due to losses in the conductors due to finite conductivity. In this case the conductors are PEC, thus their conductivity is infinite and thus $R=0 \Omega / m$.
G models the losses due to a leakage between the conductors due to a non-zero conductivity (or nonzero loss tangent) of the dielectric. Both in this case are 0 , hence $\mathrm{G}=0 \mathrm{~S} / \mathrm{m}$.

The characteristic impedance of this lossless line is thus $Z_{0}=\operatorname{sqrt}(L / C)=46 \Omega$.
The attenuation constant includes the effect of R and G, which are both 0 . Thus $\alpha=0 \mathrm{~Np} / \mathrm{m}=0 \mathrm{~dB} / \mathrm{m}$. The phase constant for this low-loss line is $\beta=\omega \operatorname{sqrt}(\mathrm{LC})=538 \mathrm{rad} / \mathrm{m}=30825^{\circ} / \mathrm{m}=30.8^{\circ} / \mathrm{mm}$. The real power carried by the wave is $\mathrm{P}^{+}(\mathrm{z})=\left|\mathrm{V}^{+}(\mathrm{z})\right|^{2} / 2 / \mathrm{Z}_{0}$, thus $\left|\mathrm{V}^{+}(0)\right|=214.5 \mathrm{~V}$. The phase of $\mathrm{V}^{+}(0)$ can be arbitrarily chosen. The amplitude of the wave $\left|V^{+}(z)\right|$ remains constant since $\alpha=0$.

The reflection due to a voltage reflection coefficient Γ_{L} at the end of the line creates a counterpropagating wave $\mathrm{V}^{-}(\mathrm{z})$ with $\mathrm{V}^{-}(3 \mathrm{~m})=\Gamma_{\mathrm{L}} \mathrm{V}^{+}(3 \mathrm{~m})$. The reflection coefficient is $\Gamma_{\mathrm{L}}=\left(\mathrm{Z}_{\mathrm{L}}-\mathrm{Z}_{0}\right) /\left(\mathrm{Z}_{\mathrm{L}}+\mathrm{Z}_{0}\right)=-0.642$ and choosing the phase of $\mathrm{V}^{+}(3 \mathrm{~m})$ as 0°, thus $\mathrm{V}^{-}(3 \mathrm{~m})=-137.7 \mathrm{~V}$.
The amplitudes of the propagating and counterpropagating waves are preserved along the line, since $\alpha=0$. Thus the two waves combine as: $V(z)=V^{+}(0) e^{-j \beta z}+V^{-}(0) e^{+j \beta z}$. Thus for some z they combine in phase and for other z they combine in opposition, creating a voltage standing wave ratio (VSWR). Where they are in phase the total voltage is maximum and equal to $\left|\mathrm{V}^{+}(0)\right|+\left|\mathrm{V}^{-}(0)\right|=352 \mathrm{~V}$.

