POLITECNICO MILANO 1863 Academic year 2022/2023	094784 Fund. of Electromagnetic Fields	Date:
	Last Name:______	First Name:
	Student ID ("Persona" or "Matricola"):	Signature:

30 August 2023 EXAM

Please answer the following questions/problems, providing a meaningful explanation of the steps/computations involved. Please specify units for all numeric results requiring them, otherwise those results will be considered wrong. Allowed support material: books, notes, scientific calculator.

Exercise 1 [8 points]

A parallel plate capacitor with circular plates with radius of $\mathrm{R}=3 \mathrm{~cm}$ spaced $\mathrm{d}=2 \mathrm{~mm}$ has an electric field of $3 \mathrm{kV} / \mathrm{m}$ constant between the plates.. The capacitor uses air as dielectric. Fringing fields at the border can be neglected.

1. Compute the potential difference ΔV between the plates
2. Compute the surface charge density on each of the plates, assumed constant.
3. A negative electrostatic point-like charge of $q=-10 p C$ and mass 1 mg is inserted into such capacitor very close to the negatively-charged plate and thus feels a force. The charge is free to move. Determine the time it takes to reach the opposite plate, starting from being still. Remember that $F(N)=m(k g) \cdot a\left(m / s^{2}\right)$.

30 August 2023 EXAM

Please answer the following questions/problems, providing a meaningful explanation of the steps/computations involved. Please specify units for all numeric results requiring them, otherwise those results will be considered wrong. Allowed support material: books, notes, scientific calculator.

Exercise 2 [12 pt]

A plane wave propagates underwater ($\varepsilon_{r}=81, \sigma=50 \mathrm{mS} / \mathrm{cm}, \tan _{\delta \varepsilon}=0, \mu_{r}=1$) at a frequency of 50 Hz with an electric field along $x: E(0)=E_{x}^{+}(0) \hat{i}_{x}$, with $\left|E_{x}^{+}(0)\right|=744 V / m$. Justifying approximations:

1. Compute the attenuation constant α (in dB / m), the phase constant β (in $\% / m$), the wavelength λ (in m), and the characteristic impedance experienced by the wave.
2. Compute the power density which hits the seabed at a depth $\mathrm{z}=200 \mathrm{~m}$
3. If the seabed is a flat rock surface with $\varepsilon_{\mathrm{r} 2}=10$, resistivity $\rho_{2}=200 \Omega \mathrm{~cm}$, compute the reflection coefficient that the wave experiences when hitting the seabed.

POLITECNICO MILANO 1863 Academic year 2022/2023	094784 Fund. of Electromagnetic Fields	Date:
	Last Name:	First Name:
	Student ID ("Persona" or "Matricola"):	Signature:

30 August 2023 EXAM

Please answer the following questions/problems, providing a meaningful explanation of the steps/computations involved. Please specify units for all numeric results requiring them, otherwise those results will be considered wrong. Allowed support material: books, notes, scientific calculator.

Exercise 3 [12 pt]

A generator at 16 GHz with no-load voltage 10 V (equivalent to 20 V peak-to-peak) and internal impedance $Z_{S}=50 \Omega$ is connected in series to a complex load impedance $Z L=(50+j 30) \Omega$ (left figure)

1. If a series rectance X_{M} is inserted in series between the generator and the load (central figure), what value should it be to maximize the amount of power dissipated by the load (conjugate matching)? What is the amount of power which is absorbed by the load in this condition?
2. If a transverse electromagnetic (TEM) transmission line, lossless, has phase constant $\beta=490 \mathrm{rad} / \mathrm{m}$ and characteristic impedance $Z_{0}=60 \Omega$ and is closed on a short circuit, how long should it be (L in meters) to present at the input the required reactance X_{M} ?
3. What is the wavelength at 16 GHz in the TEM line used in the previous question? What are the values of inductance, capacitance, resistance and conductance per unit length?

30 August 2023 EXAM

Please answer the following questions/problems, providing a meaningful explanation of the steps/computations involved. Please specify units for all numeric results requiring them, otherwise those results will be considered wrong. Allowed support material: books, notes, scientific calculator.

Exercise 1 [8 points]

A parallel plate capacitor with circular plates with radius of $\mathrm{R}=3 \mathrm{~cm}$ spaced $\mathrm{d}=2 \mathrm{~mm}$ has an electric field of $3 \mathrm{kV} / \mathrm{m}$ constant between the plates.. The capacitor uses air as dielectric. Fringing fields at the border can be neglected.

1. Compute the potential difference $\Delta \mathrm{V}$ between the plates
2. Compute the surface charge density on each of the plates, assumed constant.
3. A negative electrostatic point-like charge of $q=-10 p C$ and mass 1 mg is inserted into such capacitor very close to the negatively-charged plate and thus feels a force. The charge is free to move. Determine the time it takes to reach the opposite plate, starting from being still. Remember that $\mathrm{F}(\mathrm{N})=\mathrm{m}(\mathrm{kg}) \cdot \mathrm{a}\left(\mathrm{m} / \mathrm{s}^{2}\right)$.

Solution

The electrostatic potential between the two plates is $\Delta \mathrm{V}=\mathrm{Ed}$. The derivation is (not required):

$$
\Delta V_{\{-Q \rightarrow+Q\}}=-\Delta V_{\{z=0 \rightarrow z=d\}}=\int_{0}^{d} E \hat{\imath}_{z} \cdot \hat{\imath}_{z} d z=E d
$$

Hence $\Delta \mathrm{V}=6 \mathrm{~V}$ (between the positively-charged plate and the negatively-charged plate).
The capacitance between two charged bodies (Q and -Q), by definition, is $\mathrm{C}=\mathrm{Q} / \Delta \mathrm{V}$.
In a parallel plate capacitor the electrostatic field is constant in the whole capacitor and is directed away from the positively-charged plate: $E \hat{i}_{z}$
For a parallel plate capacitor with circular plates the formula is:
$C=\pi R^{2} \varepsilon / d=12.5 p F$. The amount of charge on each plate is thus $Q=\Delta V \cdot C=75 p C$.
Assuming this charge to be uniformly distributed, the surface charge density is $\rho_{\mathrm{s}}=\mathrm{Q} /\left(\pi R^{2}\right)=26.5 \mathrm{nC} / \mathrm{m}^{2}$.

Derivation (not needed):
Applying Gauss theorem to a cylindrical surface enclosing only the positive plate:
$\oiint_{S} \bar{D} \cdot \overline{d S}=\iiint_{V} \rho_{V} d V \rightarrow \mathrm{D} \int_{0}^{R} \int_{0}^{2 \pi} r d \varphi d r=D \frac{R^{2}}{2} 2 \pi=D R^{2} \pi \quad=Q \rightarrow E=D / \varepsilon=\mathrm{Q} /\left(\pi R^{2} \varepsilon\right)$
$\Delta V=E d=Q d /\left(\pi R^{2} \varepsilon\right) \rightarrow C=Q / \Delta V=\left(Q \pi R^{2} \varepsilon\right) /(Q d)=\pi R^{2} \varepsilon / d$
The force to which a charge q is subject is proportional to the electrostatic field: $\mathrm{F}=\mathrm{qE}=30 \mathrm{nN}$ The negative charge thus is subject to a force pushing from the negative plate toward the positive plate. Neglecting gravitational force, the corresponding acceleration is $a=F / \mathrm{m}=3 \cdot 10^{-2} \mathrm{~m} / \mathrm{s}^{2}$. The stationary charge hence begins accelerating toward the positive plate, travelling a distance $a \cdot t^{2}$, which requires $\mathrm{t}=\mathrm{sqrt}(\mathrm{d} / \mathrm{a})=0.258 \mathrm{~s}$.

30 August 2023 EXAM

Please answer the following questions/problems, providing a meaningful explanation of the steps/computations involved. Please specify units for all numeric results requiring them, otherwise those results will be considered wrong. Allowed support material: books, notes, scientific calculator.

Exercise 2 [12 pt]

A plane wave propagates underwater ($\varepsilon_{r}=81, \sigma=50 \mathrm{mS} / \mathrm{cm}, \tan _{\delta \varepsilon}=0, \mu_{r}=1$) at a frequency of 50 Hz with an electric field along $x: E(0)=E_{x}^{+}(0) \hat{i}_{x}$, with $\left|E_{x}^{+}(0)\right|=744 V / m$. Justifying approximations:

1. Compute the attenuation constant α (in dB / m), the phase constant β (in $\% / m$), the wavelength λ (in m), and the characteristic impedance experienced by the wave.
2. Compute the power density which hits the seabed at a depth $\mathrm{z}=200 \mathrm{~m}$
3. If the seabed is a flat rock surface with $\varepsilon_{\mathrm{r} 2}=10$, resistivity $\rho_{2}=200 \Omega \mathrm{~cm}$, compute the reflection coefficient that the wave experiences when hitting the seabed.

Solution

Check if water is a good dielectric: $\omega \varepsilon \gg \sigma$? $2.25 \cdot 10^{-7} \mathrm{~S} / \mathrm{m} \ll 0.05 \mathrm{~S} / \mathrm{cm}=5 \mathrm{~S} / \mathrm{m} \rightarrow$ Good conductor.
For a good conductor: $\gamma=\operatorname{sqrt}(\mathrm{j} \omega \mu(\mathrm{j} \omega \varepsilon+\sigma)) \approx \operatorname{sqrt}(\mathrm{j} \omega \mu \sigma)=\operatorname{sqrt}(\omega \mu \sigma / 2)(1+\mathrm{j})$
Thus: $\alpha=\beta=\operatorname{sqrt}(\omega \mu \sigma / 2)=0.0314 \cdot \mathrm{~m}^{-1} \cdot \beta=\operatorname{imag}(\gamma)=0.0314 \mathrm{rad} / \mathrm{m}=1.8^{\circ} / \mathrm{m}$. $\alpha=$ real $(\gamma)=0.0314 \mathrm{~Np} / \mathrm{m}=0.273 \mathrm{~dB} / \mathrm{m}$. Wavelength $\lambda=2 \pi / \beta=200 \mathrm{~m}$. Characteristic impedance $\eta_{\text {WATER }}=j \omega \mu / \gamma=(1+j)$ sqrt $(\omega \mu / 2 / \sigma)=6.28(1+j) \mathrm{m} \Omega$. Assuming the electric field to be directed along x and the magnetic field along u, then, the wave propagates according to: $\mathrm{E}^{+} \times(\mathrm{z})=\mathrm{E}^{+}{ }_{x}(0) \mathrm{e}^{-\gamma z}$. Thus the amplitude of electric field decreases with:
$\left|E_{x}^{+}(z)\right|=\left|E_{x}^{+}(0)\right| e^{-\alpha z}$, thus giving $\left|E_{x}^{+}(200 \mathrm{~m})\right|=1.39 \mathrm{~V} / \mathrm{m}$. The corresponding magnetic field is orthogonal (in space) to the electric field and it is determined by the characteristic impedance: $\mathrm{H}^{+}{ }_{y}(200 \mathrm{~m})=\mathrm{E}^{+}{ }_{x}$ $(200 \mathrm{~m}) / \eta=156 \mathrm{~A} / \mathrm{m} \angle-45^{\circ}$, where the electric field is assumed with phase 0 at 200 m .
The corresponding power density is obtained from the real Poynting vector, which has only z component:
$\mathrm{S}_{z}^{+}(200 \mathrm{~m})=0.5 \operatorname{Real}\left(\mathrm{E}_{\mathrm{x}}^{+}(200 \mathrm{~m}) \cdot\left(\mathrm{H}_{\mathrm{y}}^{+}(200 \mathrm{~m})^{*}\right)\right)=$ real $(76.7-\mathrm{j} 76.7) \mathrm{W} / \mathrm{m} 2=76.7 \mathrm{~W} / \mathrm{m}^{2}$.
The reflection coefficient of the electric field from water to seabed is:
$\Gamma=\left(\eta_{\text {SEABED }}-\eta_{\text {WATER }}\right) /\left(\eta_{\text {SEABED }}+\eta_{\text {WATER }}\right)$
The seabed is also a good conductor ($\omega \varepsilon=2.8^{-8} \mathrm{~S} / \mathrm{m} \ll 1 /$ rho $=0.5 \mathrm{~S} / \mathrm{m}$), thus the same approximated formula can be used for $\eta_{\text {SEABED }}=(1+\mathrm{j})$ sqrt $(\omega \mu / 2 / \sigma)=19.9(1+\mathrm{j}) \mathrm{m} \Omega$.
Thus $\Gamma=0.52$ (real).

30 August 2023 EXAM

Please answer the following questions/problems, providing a meaningful explanation of the steps/computations involved. Please specify units for all numeric results requiring them, otherwise those results will be considered wrong. Allowed support material: books, notes, scientific calculator.

Exercise 3 [12 pt]

A generator at 16 GHz with no-load voltage 10 V (equivalent to 20 V peak-to-peak) and internal impedance $Z_{s}=50 \Omega$ is connected in series to a complex load impedance $Z L=(50+j 30) \Omega$ (left figure)

1. If a series rectance X_{M} is inserted in series between the generator and the load (central figure), what value should it be to maximize the amount of power dissipated by the load (conjugate matching)? What is the amount of power which is absorbed by the load in this condition?
2. If a transverse electromagnetic (TEM) transmission line, lossless, has phase constant $\beta=490 \mathrm{rad} / \mathrm{m}$ and characteristic impedance $\mathrm{Z}_{0}=60 \Omega$ and is closed on a short circuit, how long should it be (L in meters) to present at the input the required reactance X_{M} ?
3. What is the wavelength at 16 GHz in the TEM line used in the previous question? What are the values of inductance, capacitance, resistance and conductance per unit length?

Solution

Maximum power transfer is obtained when the load $\left(Z_{L}+j X_{M}\right)$ is conjugately matched to the generator impedance $\left(Z_{S}\right)$: Therefore, we need $X_{M}=-30 \Omega$ to cancel out the imaginary part of Z_{L}.
Under this condition, the real power absorbed by the load is maximum, and equal to the available power from the generator: $\mathrm{PL}=\mathrm{Pav}=(10 \mathrm{~V})^{2} /\left(8\right.$ real $\left.\left(Z_{\mathrm{S}}\right)\right)=0.25 \mathrm{~W}$.
The impedance observed from the input of a line is $Z_{\text {in }}=Z_{0}\left(1+\Gamma_{L} e^{-2 j \beta L}\right) /\left(1-\Gamma_{L} e^{-2 j \beta L}\right)$ when the other end of the line is terminated by a reflection coefficient Γ_{L}.
In our case, the line is short circuited, i.e. $Z=0$. The corresponding reflection coefficient is thus: $\Gamma_{\mathrm{L}}=\left(Z-Z_{0}\right) /\left(Z+Z_{0}\right)=-1$. Then, the derivation of the input impedance (not required) is:
Propagation and counterpropagation of two waves on the line follow $V(z)=V^{+}(0) e^{-j \beta z}+V^{-}(0) e^{+j \beta z}$ and $I(z)=I^{+}(0) e^{-j \beta z}$ $+I^{-}(0) \mathrm{e}^{+j \beta z}$ with $\mathrm{V}^{+}(0) / I^{+}(0)=\mathrm{Z}_{0}$ and $\mathrm{V}(0) / I^{-}(0)=-\mathrm{Z}_{0}$.
The ratio between the counterpropagating and propagating voltage wave is $\Gamma(z)=V^{-}(0) e^{+j \beta z} /\left(V^{+}(0) e^{-j \beta z}\right)=\Gamma(0) e^{+2 j \beta z}$ In our case, we know the reflection coefficient on the load $V^{+}(\mathrm{L}) / \mathrm{V}^{-}(\mathrm{L})=\Gamma(\mathrm{L})=\Gamma_{\mathrm{L}} \rightarrow \Gamma_{\text {in }}=\Gamma(0)=\Gamma_{\mathrm{L}} \mathrm{e}^{-2 j \beta_{2}}$
The corresponding impedance is $\mathrm{Z}_{\text {in }}=\mathrm{V}(0) / I(0)=\mathrm{Z}_{0}\left(1+\Gamma_{\text {in }}\right) /\left(1-\Gamma_{\text {in }}\right)$.
Therefore the input impedance, in our case, is $Z_{\text {in }}=Z_{0}\left(1-e^{-2 j \beta L}\right) /\left(1+e^{-2 j \beta L}\right)=Z_{0} j \tan (\beta L)$
We need $\mathrm{Z}_{\mathrm{in}}=-\mathrm{j} 30 \rightarrow \tan (\beta \mathrm{~L})=-30 / 60=-0.5 \rightarrow \beta \mathrm{~L}=-26.6^{\circ}+\mathrm{N} 180^{\circ}=153^{\circ} \rightarrow \mathrm{L}=153^{\circ} \pi / 180^{\circ} / \beta=5.45 \mathrm{~mm}$
The wavelength is $\lambda=2 \pi / \beta=12.82 \mathrm{~mm}$ at 16 GHz .
Since the line is lossess ($\alpha=0$), resistance R and conductance G per unit length are both $0\left(\alpha=R / 2 / Z_{0}+G Z_{0} / 2\right)$.
Moreover, we know $\beta=\omega$ sqrt(LC) and $Z_{0}=s q r t(L / C) \rightarrow \beta Z O=\omega L \rightarrow L=292 n H / m ; C=L / Z_{0}{ }^{2}=81.2 \mathrm{pF} / \mathrm{m}$

